Estimating softwareintensive projects

Combining techniques for the right result.

Emmanuel Gonnet, September 2008

Game Time

- You can win a prize!
- Estimate how many slides I will go through during my presentation?

Agenda

- Solving business problems
 - Examining some fundamentals
 - Reviewing the estimation methods
 - Historical data
 - Counting
 - Decomposition
 - Combining methods for better results
 - Concluding Best practices

What business problems?

- Estimation solves issues related to "guesstimation" by:
 - Reducing gaps between targets and reality
 - Enabling planning and monitoring activities
 - Resource planning
 - Scheduling
 - Gating the investment process
 - Facilitating communication and transparency

Agenda

- Solving business problems
- Examining some fundamentals
 - Reviewing the estimation methods
 - Expert judgment
 - Historical data
 - Counting
 - Concluding Best practices

Accuracy varies with time

■ Environment

Initial

Iterations

C2

Process

T2

Implications

- Single point estimates are not accurate
- Accuracy should improve with time
- The estimation method should change as the project progresses.

Choice of an estimation method

- The choice of estimation method depends on:
 - The nature of the software (embedded, ...)
 - The size of the project (small, medium..)
 - The point in time when the estimation is done
 - The type of project (Greenfield, maintenance...)
 - Others?

Implications

- Organizations should master multiple estimation methods that map to the possible scenarios they may face.
 - Some estimation techniques are not appropriate for certain combinations of variables
- A decision tree is needed to identify the right technique in the right context

Cost is size times productivity

Cost = Size * Productivity

Where

- Cost could be "days"
- Size could be "number of work units"
- Productivity could be "days/number of work units"

Implications

- Regardless of the technique used:
 - Size of the effort should be estimated
 - Productivity and contextual assumptions should be articulated.
- Sizing and productivity information should be transferable between estimation techniques
 - Establishing "work units" is paramount
 - Productivity is a major data element

Agenda

- Solving business problems
- Examining some fundamentals
- Reviewing the estimation methods
 - Historical data
 - Counting
 - Decomposition
 - Concluding Best practices

Historical data

- Based on past experience and recorded information
- Techniques are:
 - Expert judgments (i.e. wideband delphi)
 - Industry benchmarks
 - Recorded data (i.e. Timesheets)
 - Analogy
- Are you records in the C=S*P format?

Counting

- Based on the computation of certain elements
- Techniques are:
 - Function points, use case points...
 - Proxy-based methods
 - What else can you count?
- Good way to size the effort
 - Still require productivity information

Decomposition

- Based on the division of work into "bite-size" components
- Techniques are:
 - Decomposition into WBS
 - Decomposition of functions...
- Still requires historical data and counts:
 - List of tasks
 - Counting the functions ...
- Benefits from the law of large numbers

Focus on use case points

- (AW + UW) * TF * EF * PHF
 - Where (AW+UW) * TF represent the size
 - Where EF*PHF represents the productivity
- Requires
 - The counting of use cases and actors
 - Measures of productivity elements (data)
- Preferred method for the unified process post inception-phase

AW: Actor Weight, UW: Use Case Weight, TF: Technical Factors, EF: Environment

Factors, PHF: Person Hour Factor

Agenda

- Solving business problems
- Examining some fundamentals
- Reviewing the estimation methods
 - Historical data
 - Counting
 - Decomposition
- Concluding Best practices

Example: combining techniques for better accuracy

Best practices

- Contextualize the estimation process
 - Adopt the method that matches the situation
 - Combine methods for better results
- Choose work units and a data collection scheme
 - Measure both size and productivity
 - Employ measurable work units
 - Record data for better calibration and process improvement (learning)

Thanks you! Q/A

GEM-UP CONSULTING is a management consulting practice focusing on providing expert advices to organizations in the business of developing software.

www.gem-up.com

Winners?

■ This presentation had 21 slides.

